Extended Relativistic Toda Lattice, L-Orthogonal Polynomials and Associated Lax Pair

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orthogonal polynomials and the finite Toda lattice

The choice of a finitely supported distribution is viewed as a degenerate bilinear form on the polynomials in the spectral parameter z and the matrix representing multiplication by z in terms of an orthogonal basis is constructed. It is then shown that the same induced time dependence for finitely supported distributions which gives the ith KP flow under the dual isomorphism induces the ith flo...

متن کامل

Bivariate orthogonal polynomials, 2D Toda lattices and Lax-type pairs

We explore the connection between an infinite system of particles in R2 described by a bi–dimensional version of the Toda equations with the theory of orthogonal polynomials in two variables. We define a 2D Toda lattice in the sense that we consider only one time variable and two space variables describing a mesh of interacting particles over the plane. We show that this 2D Toda lattice is rela...

متن کامل

Symmetric Orthogonal Polynomials and the Associated Orthogonal L-polynomials

We show how symmetric orthogonal polynomials can be linked to polynomials associated with certain orthogonal L-polynomials. We provide some examples to illustrate the results obtained. Finally as an application, we derive information regarding the orthogonal polynomials associated with the weight function (1 + kx2)(l x2)~1/2, k>0.

متن کامل

Direct and inverse spectral transform for the relativistic Toda lattice and the connection with Laurent orthogonal polynomials

Abstract. We introduce a spectral transform for the finite relativistice Toda lattice (RTL) in generalized form. In the nonrelativistic case, Moser constructed a spectral transform from the spectral theory of symmetric Jacobi matrices. Here we use a nonsymmetric generalized eigenvalue problem for a pair of bidiagonal matrices (L, M) to define the spectral transform for the RTL. The inverse spec...

متن کامل

Toda versus Pfaff Lattice and Related Polynomials

The Pfaff lattice was introduced by us in the context of a Lie algebra splitting of gl (∞) into sp (∞) and an algebra of lower-triangular matrices. The Pfaff lattice is equivalent to a set of bilinear identities for the wave functions, which yield the existence of a sequence of “τ -functions”. The latter satisfy their own set of bilinear identities, which moreover characterize them. In the semi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Applicandae Mathematicae

سال: 2018

ISSN: 0167-8019,1572-9036

DOI: 10.1007/s10440-018-00229-x